If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+6w-80=0
a = 2; b = 6; c = -80;
Δ = b2-4ac
Δ = 62-4·2·(-80)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-26}{2*2}=\frac{-32}{4} =-8 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+26}{2*2}=\frac{20}{4} =5 $
| 3(6y-4)=5y+2 | | 2b+2(4b)=560 | | -16(x-8)=4(x+64) | | 4x-11/2=x+7 | | 27=6u-3u | | 6+4x=5x+3 | | -12x^2-196=-112x | | 4-3(5+2)=4(7-3x) | | 5^2x=5^x+5 | | 3a+9=3a-3 | | 2r+6=8r+8 | | 1/v=24.75 | | p=22-0.5 | | 4.1x+38.1=7.2-6.2x | | 8.48x+33.92=67.87 | | q=22-0.5 | | 3.25c+400=2.50c+600 | | 1/7a+3=-2 | | x5=2/3 | | q=6-0.5+16 | | 1/3a+7=-2 | | -1/5a+6=4 | | -1/6a+5=2 | | 10w+3=34 | | 10+6y+12=16 | | 0.02n+193=0.3n+1/2(n-4) | | 10+2x=2(x+50) | | x*0.05=35000 | | 4x-20=140 | | x-1/49=x=1/63 | | -1/6a+7=2 | | 4z÷3=8 |